Today I tested with a simple LaTeX examples in the Colab notebook.
If you open my notebook colab then you will see some issues and how can be fixed.
You can find this on my notebook - catafest_056.ipynb on colab repo.
Is a blog about python programming language. You can see my work with python programming language, tutorials and news.
import winreg
# Open the CLSID key under HKEY_CLASSES_ROOT
clsid_key = winreg.OpenKey(winreg.HKEY_CLASSES_ROOT, "CLSID")
# Iterate through all the subkeys
for i in range(winreg.QueryInfoKey(clsid_key)[0]):
# Get the name of the subkey
subkey_name = winreg.EnumKey(clsid_key, i)
# Open the subkey
subkey = winreg.OpenKey(clsid_key, subkey_name, 0, winreg.KEY_READ)
try:
# Read the default value of the subkey
value, type = winreg.QueryValueEx(subkey, "")
# Print the subkey name and the value
print(subkey_name, value)
except:
# Skip the subkeys that cannot be read
pass
# Close the subkey
winreg.CloseKey(subkey)
# Close the CLSID key
winreg.CloseKey(clsid_key)
import winreg
# Open the CLSID key under HKEY_CLASSES_ROOT
clsid_key = winreg.OpenKey(winreg.HKEY_CLASSES_ROOT, "CLSID")
# Open the file for writing
with open("clsid_info.txt", "w") as f:
# Iterate through all the subkeys
for i in range(winreg.QueryInfoKey(clsid_key)[0]):
# Get the name of the subkey
subkey_name = winreg.EnumKey(clsid_key, i)
# Open the subkey
subkey = winreg.OpenKey(clsid_key, subkey_name, 0, winreg.KEY_READ)
try:
# Read the default value of the subkey
value, type = winreg.QueryValueEx(subkey, "")
# Write the subkey name and the value to the file
f.write(subkey_name + " " + value + "\n")
except:
# Skip the subkeys that cannot be read
pass
# Close the subkey
winreg.CloseKey(subkey)
# Close the CLSID key
winreg.CloseKey(clsid_key)
example-project-tensorflow-keras
import glob
import hashlib
import matplotlib.pyplot as plt
import neptune.new as neptune
import numpy as np
import pandas as pd
import tensorflow as tf
from neptune.new.integrations.tensorflow_keras import NeptuneCallback
from scikitplot.metrics import plot_roc, plot_precision_recall
# Select project
run = neptune.init(project='common/example-project-tensorflow-keras',
tags=['keras', 'fashion-mnist'],
name='keras-training')
# Prepare params
parameters = {'dense_units': 128,
'activation': 'relu',
'dropout': 0.23,
'learning_rate': 0.15,
'batch_size': 64,
'n_epochs': 30}
run['model/params'] = parameters
# Prepare dataset
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()
x_train = x_train / 255.0
x_test = x_test / 255.0
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# Log data version
run['data/version/x_train'] = hashlib.md5(x_train).hexdigest()
run['data/version/y_train'] = hashlib.md5(y_train).hexdigest()
run['data/version/x_test'] = hashlib.md5(x_test).hexdigest()
run['data/version/y_test'] = hashlib.md5(y_test).hexdigest()
run['data/class_names'] = class_names
# Log example images
for j, class_name in enumerate(class_names):
plt.figure(figsize=(10, 10))
label_ = np.where(y_train == j)
for i in range(9):
plt.subplot(3, 3, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(x_train[label_[0][i]], cmap=plt.cm.binary)
plt.xlabel(class_names[j])
run['data/train_sample'].log(neptune.types.File.as_image(plt.gcf()))
plt.close('all')
# Prepare model
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(parameters['dense_units'], activation=parameters['activation']),
tf.keras.layers.Dropout(parameters['dropout']),
tf.keras.layers.Dense(parameters['dense_units'], activation=parameters['activation']),
tf.keras.layers.Dropout(parameters['dropout']),
tf.keras.layers.Dense(10, activation='softmax')
])
optimizer = tf.keras.optimizers.SGD(learning_rate=parameters['learning_rate'])
model.compile(optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Log model summary
model.summary(print_fn=lambda x: run['model/summary'].log(x))
# Train model
neptune_cbk = NeptuneCallback(run=run, base_namespace='metrics')
model.fit(x_train, y_train,
batch_size=parameters['batch_size'],
epochs=parameters['n_epochs'],
validation_split=0.2,
callbacks=[neptune_cbk])
# Log model weights
model.save('trained_model')
run['model/weights/saved_model'].upload('trained_model/saved_model.pb')
for name in glob.glob('trained_model/variables/*'):
run[name].upload(name)
# Evaluate model
eval_metrics = model.evaluate(x_test, y_test, verbose=0)
for j, metric in enumerate(eval_metrics):
run['test/scores/{}'.format(model.metrics_names[j])] = metric
# Log predictions as table
y_pred_proba = model.predict(x_test)
y_pred = np.argmax(y_pred_proba, axis=1)
y_pred = y_pred
df = pd.DataFrame(data={'y_test': y_test, 'y_pred': y_pred, 'y_pred_probability': y_pred_proba.max(axis=1)})
run['test/predictions'] = neptune.types.File.as_html(df)
# Log model performance visualizations
fig, ax = plt.subplots()
plot_roc(y_test, y_pred_proba, ax=ax)
run['charts/ROC'] = neptune.types.File.as_image(fig)
fig, ax = plt.subplots()
plot_precision_recall(y_test, y_pred_proba, ax=ax)
run['charts/precision-recall'] = neptune.types.File.as_image(fig)
plt.close('all')
run.wait()
!python
Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
from cartopy.io import shapereader
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.io.img_tiles as cimgt
extent = [15, 25, 55, 35]
request = cimgt.OSM()
fig = plt.figure(figsize=(9, 13))
ax = plt.axes(projection=request.crs)
gl = ax.gridlines(draw_labels=True, alpha=0.2)
gl.top_labels = gl.right_labels = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
ax.set_extent(extent)
ax.add_image(request, 11)
plt.show()
C:\PythonProjects\scapy_001>pip install scapy
Collecting scapy
Downloading scapy-2.5.0.tar.gz (1.3 MB)
---------------------------------------- 1.3/1.3 MB 3.5 MB/s eta 0:00:00
Installing build dependencies ... done
...
Successfully built scapy
Installing collected packages: scapy
Successfully installed scapy-2.5.0
from scapy.all import Dot11,Dot11Beacon,Dot11Elt,RadioTap,sendp,hexdump
netSSID = 'testSSID' #Network name here
iface = 'Realtek PCIe GbE Family Controller' #Interface name here
dot11 = Dot11(type=0, subtype=8, addr1='ff:ff:ff:ff:ff:ff',
addr2='22:22:22:22:22:22', addr3='33:33:33:33:33:33')
beacon = Dot11Beacon(cap='ESS+privacy')
essid = Dot11Elt(ID='SSID',info=netSSID, len=len(netSSID))
rsn = Dot11Elt(ID='RSNinfo', info=(
'\x01\x00' #RSN Version 1
'\x00\x0f\xac\x02' #Group Cipher Suite : 00-0f-ac TKIP
'\x02\x00' #2 Pairwise Cipher Suites (next two lines)
'\x00\x0f\xac\x04' #AES Cipher
'\x00\x0f\xac\x02' #TKIP Cipher
'\x01\x00' #1 Authentication Key Managment Suite (line below)
'\x00\x0f\xac\x02' #Pre-Shared Key
'\x00\x00')) #RSN Capabilities (no extra capabilities)
frame = RadioTap()/dot11/beacon/essid/rsn
frame.show()
print("\nHexdump of frame:")
hexdump(frame)
input("\nPress enter to start\n")
sendp(frame, iface=iface, inter=0.100, loop=1)
python scapy_network_001.py
###[ RadioTap ]###
version = 0
pad = 0
len = None
present = None
notdecoded= ''
###[ 802.11 ]###
subtype = Beacon
type = Management
proto = 0
FCfield =
ID = 0
addr1 = ff:ff:ff:ff:ff:ff (RA=DA)
addr2 = 22:22:22:22:22:22 (TA=SA)
addr3 = 33:33:33:33:33:33 (BSSID/STA)
SC = 0
###[ 802.11 Beacon ]###
timestamp = 0
beacon_interval= 100
cap = ESS+privpython scapy_network_001.py
###[ RadioTap ]### tion Element ]###
version = 0 = SSID
pad = 0 = 8
len = None = 'testSSID'
present = Noneation Element ]###
notdecoded= '' = RSN
###[ 802.11 ]### = None
subtype = Beacon'\x01\x00\x00\x0f¬\x02\x02\x00\x00\x0f¬\x04\x00\x0f¬\x02\x01\x00\x00\x
type = Management
proto = 0
FCfield =
ID = 0
addr1 = ff:ff:ff:ff:ff:ff (RA=DA)FF FF FF FF ................
addr2 = 22:22:22:22:22:22 (TA=SA)33 33 00 00 ..""""""333333..
addr3 = 33:33:33:33:33:33 (BSSID/STA)8 74 65 ........d.....te
SC = 049 44 30 1C 01 00 00 0F C2 AC 02 02 stSSID0.........
###[ 802.11 Beacon ]### 00 0F C2 AC 02 01 00 00 0F C2 ................
timestamp = 0 ....
beacon_interval= 100
cap = ESS+privacy
###[ 802.11 Information Element ]###
ID = SSID..................................................................
len = 8.....................................................................
info = 'testSSID'
###[ 802.11 Information Element ]###
ID = RSN
len = None>
info = '\x01\x00\x00\x0f¬\x02\x02\x00\x00\x0f¬\x04\x00\x0f¬\x02\x01\x00\x00\x0f¬\x02\x00\x00'
Hexdump of frame:
0000 00 00 08 00 00 00 00 00 80 00 00 00 FF FF FF FF ................
0010 FF FF 22 22 22 22 22 22 33 33 33 33 33 33 00 00 ..""""""333333..
0020 00 00 00 00 00 00 00 00 64 00 11 00 00 08 74 65 ........d.....te
0030 73 74 53 53 49 44 30 1C 01 00 00 0F C2 AC 02 02 stSSID0.........
0040 00 00 0F C2 AC 04 00 0F C2 AC 02 01 00 00 0F C2 ................
0050 AC 02 00 00 ....
Press enter to start
.................................................................
Sent 130 packets.
import pyotp
# Generare secret pentru utilizator
secret = pyotp.random_base32()
# Generare URL pentru codul QR
uri = pyotp.totp.TOTP(secret).provisioning_uri(name="UtilizatorExemplu", issuer_name="NumeServer")
# Exemplu de folosire a URI-ului într-o aplicație web sau pentru a genera un cod QR
print("Scanati urmatorul QR code in aplicatia Microsoft Authenticator:")
print(uri)
python test_001.py
Scanati urmatorul QR code in aplicatia Microsoft Authenticator:
otpauth://totp/NumeServer:UtilizatorExemplu?secret=SPZICPQHAMWOIYCAZEHXZTPQDXEXZSWL&issuer=NumeServer
from google.colab import auth
auth.authenticate_user()
import gspread
from google.auth import default
creds, _ = default()
gc = gspread.authorize(creds)
# Open the spreadsheet by name
spreadsheet = gc.open('fiecare_saptamana')
# Choose a worksheet from the spreadsheet
worksheet = spreadsheet.get_worksheet(0) # 0 represents the index of the first worksheet
# Get and print the data
data = worksheet.get_all_values()
#uncoment this line to print data sau add more source code to parse data
#print(data)
#the result will be
#[['noreply@projects.blender.org', '437', 'notifications@github.com', ...
python
Python 3.13.0a1 (tags/v3.13.0a1:ad056f0, Oct 13 2023, 09:51:17) [MSC v.1935 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> help()
Welcome to Python 3.13's help utility!
If this is your first time using Python, you should definitely check out
the tutorial on the internet at https://docs.python.org/3.13/tutorial/.
Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".
To get a list of available modules, keywords, symbols, or topics, type
"modules", "keywords", "symbols", or "topics". Each module also comes
with a one-line summary of what it does; to list the modules whose name
or summary contain a given string such as "spam", type "modules spam".
help> modules
Please wait a moment while I gather a list of all available modules...
test_sqlite3: testing with SQLite version 3.43.1
__future__ _testcapi fractions runpy
__hello__ _testclinic ftplib sched
__phello__ _testclinic_limited functools secrets
_abc _testconsole gc select
_aix_support _testimportmultiple genericpath selectors
_ast _testinternalcapi getopt shelve
_asyncio _testmultiphase getpass shlex
_bisect _testsinglephase gettext shutil
_blake2 _thread glob signal
_bz2 _threading_local graphlib site
_codecs _tkinter gzip smtplib
_codecs_cn _tokenize hashlib socket
_codecs_hk _tracemalloc heapq socketserver
_codecs_iso2022 _typing hmac sqlite3
_codecs_jp _uuid html sre_compile
_codecs_kr _warnings http sre_constants
_codecs_tw _weakref idlelib sre_parse
_collections _weakrefset imaplib ssl
_collections_abc _winapi importlib stat
_compat_pickle _wmi inspect statistics
_compression _xxinterpchannels io string
_contextvars _xxsubinterpreters ipaddress stringprep
_csv _zoneinfo itertools struct
_ctypes abc json subprocess
_ctypes_test antigravity keyword symtable
_datetime argparse linecache sys
_decimal array locale sysconfig
_elementtree ast logging tabnanny
_functools asyncio lzma tarfile
_hashlib atexit mailbox tempfile
_heapq base64 marshal test
_imp bdb math textwrap
_io binascii mimetypes this
_json bisect mmap threading
_locale builtins modulefinder time
_lsprof bz2 msvcrt timeit
_lzma cProfile multiprocessing tkinter
_markupbase calendar netrc token
_md5 cmath nt tokenize
_multibytecodec cmd ntpath tomllib
_multiprocessing code nturl2path trace
_opcode codecs numbers traceback
_opcode_metadata codeop opcode tracemalloc
_operator collections operator tty
_osx_support colorsys optparse turtle
_overlapped compileall os turtledemo
_pickle concurrent pathlib types
_py_abc configparser pdb typing
_pydatetime contextlib pickle unicodedata
_pydecimal contextvars pickletools unittest
_pyio copy pip urllib
_pylong copyreg pkgutil uuid
_queue csv platform venv
_random ctypes plistlib warnings
_sha1 curses poplib wave
_sha2 dataclasses posixpath weakref
_sha3 datetime pprint webbrowser
_signal dbm profile winreg
_sitebuiltins decimal pstats winsound
_socket difflib pty wsgiref
_sqlite3 dis py_compile xml
_sre doctest pyclbr xmlrpc
_ssl email pydoc xxsubtype
_stat encodings pydoc_data zipapp
_statistics ensurepip pyexpat zipfile
_string enum queue zipimport
_strptime errno quopri zlib
_struct faulthandler random zoneinfo
_symtable filecmp re
_sysconfig fileinput reprlib
_testbuffer fnmatch rlcompleter
Enter any module name to get more help. Or, type "modules spam" to search
for modules whose name or summary contain the string "spam".
help> ^Z
>>>
python.exe -m pip install --upgrade pip
~/Django001$ python
Python 3.8.12 (default, Aug 30 2021, 16:42:10)
[GCC 10.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import secrets
>>> secrets.token_urlsafe(32)
'yIXPv6u4uCt4AUWlkU4NCuoyJiZlLx5IFm8kG6h8RtA'
~/Django001$ python manage.py startapp catafest001
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'catafest001',
]
~/Django001$ python manage.py createsuperuser
Username (leave blank to use 'runner'):
Email address: catafest@yahoo.com
Password:
Password (again):
The password is too similar to the username.
Bypass password validation and create user anyway? [y/N]: y
Superuser created successfully.