Friday, September 22, 2017

The python-vlc python module.

The python module for vlc is named python-vlc.
This python module let you to test libvlc API like the VLC video player.
You can install it easy with pip python tool.
C:\Python27\Scripts>pip2.7.exe install python-vlc
Collecting python-vlc
  Downloading python-vlc-1.1.2.tar.gz (201kB)
    100% |################################| 204kB 628kB/s
Installing collected packages: python-vlc
  Running setup.py install for python-vlc ... done
Successfully installed python-vlc-1.1.2
Let's see a simple example with this python module:
import os
import sys
import vlc
import pygame
 
def call_vlc(self, player):
 
    player.get_fps()
    player.get_time()
 
if len( sys.argv )< 2 or len( sys.argv )> 3:
        print 'Help: python vlc_001.py your_video.mp4'
else:
    pygame.init()
    screen = pygame.display.set_mode((800,600),pygame.RESIZABLE)
    pygame.display.get_wm_info()
    pygame.display.get_driver()

 
    # get path to movie specified as command line argument
    movie = os.path.expanduser(sys.argv[1])
    # see if movie is accessible
    if not os.access(movie, os.R_OK):
        print('Error: %s wrong read file: ' % movie)
        sys.exit(1)
 
    # make instane of VLC and create reference to movie.
    vlcInstance = vlc.Instance()
    media = vlcInstance.media_new(movie)
 
    # make new instance of vlc player
    player = vlcInstance.media_player_new()
 
    # start with a callback
    em = player.event_manager()
    em.event_attach(vlc.EventType.MediaPlayerTimeChanged, \
        call_vlc, player)
 
    # set pygame window id to vlc player
    win_id = pygame.display.get_wm_info()['window']
    if sys.platform == "win32": # for Windows
        player.set_hwnd(win_id)
 
    # load movie into vlc player instance
    player.set_media(media)
 
    # quit pygame mixer to allow vlc full access to audio device
    pygame.mixer.quit()
 
    # start movie play
    player.play()
 
    while player.get_state() != vlc.State.Ended:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                sys.exit(2)
The base of this python script is to make a instance of vlc and put into pygame display.
Another simple example:
C:\Python27>python.exe
Python 2.7.13 (v2.7.13:a06454b1afa1, Dec 17 2016, 20:42:59) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import vlc
>>> inst = vlc.Instance()
Warning: option --plugin-path no longer exists.
Warning: option --plugin-path no longer exists.
>>> med = inst.media_new('rain.mp4')
>>> p = med.player_new_from_media()
>>> p.play()
0
>>>

Tuesday, September 19, 2017

The numba python module - part 002 .

Today I tested how fast is jit from numba python and fibonacci math function.
You will see strange output I got for some values.
First example:
import numba
from numba import jit
from timeit import default_timer as timer

def fibonacci(n):
    a, b = 1, 1
    for i in range(n):
        a, b = a+b, a
    return a
fibonacci_jit = jit(fibonacci)

start = timer()
fibonacci(100)
duration = timer() - start

startnext = timer()
fibonacci_jit(100)
durationnext = timer() - startnext

print(duration, durationnext)
The result of this run is:
C:\Python27>python numba_test_003.py
(0.00018731270733896962, 0.167499256682878)

C:\Python27>python numba_test_003.py
(1.6357787798437412e-05, 0.1683614083221368)

C:\Python27>python numba_test_003.py
(2.245186560569841e-05, 0.1758382003097716)

C:\Python27>python numba_test_003.py
(2.3093347480146938e-05, 0.16714964906130353)

C:\Python27>python numba_test_003.py
(1.5395564986764625e-05, 0.17471143739730277)

C:\Python27>python numba_test_003.py
(1.5074824049540363e-05, 0.1847134227837042)
As you can see the fibonacci function is not very fast.
The jit - just-in-time compile is very fast.
Let's see if the python source code may slow down.
Let's see the new source code with jit will not work well:
import numba
from numba import jit
from timeit import default_timer as timer

def fibonacci(n):
    a, b = 1, 1
    for i in range(n):
        a, b = a+b, a
    return a
fibonacci_jit = jit(fibonacci)

start = timer()
print fibonacci(100)
duration = timer() - start

startnext = timer()
print fibonacci_jit(100)
durationnext = timer() - startnext

print(duration, durationnext)
The result is this:
C:\Python27>python numba_test_003.py
927372692193078999176
1445263496
(0.0002334994022992635, 0.17628787910376)

C:\Python27>python numba_test_003.py
927372692193078999176
1445263496
(0.0006886307922204926, 0.17579169287387408)

C:\Python27>python numba_test_003.py
927372692193078999176
1445263496
(0.0008105123483657127, 0.18209553525407973)

C:\Python27>python numba_test_003.py
927372692193078999176
1445263496
(0.00025466830415606486, 0.17186550306131188)

C:\Python27>python numba_test_003.py
927372692193078999176
1445263496
(0.0007348174871807866, 0.17523103771560608)
The result for value 100 is not the same: 927372692193078999176 and 1445263496.
First problem is:
The problem is that numba can't intuit the type of lookup. If you put a print nb.typeof(lookup) in your method, you'll see that numba is treating it as an object, which is slow.
The second problem is the output but can be from same reason.
I test with value 5 and the result is :
C:\Python27>python numba_test_003.py
13
13
13
13
(0.0007258367409385072, 0.17057997338491704)

C:\Python27>python numba_test_003.py
13
13
(0.00033709872502270044, 0.17213235952108247)

C:\Python27>python numba_test_003.py
13
13
(0.0004836773333341886, 0.17184433415945508)

C:\Python27>python numba_test_003.py
13
13
(0.0006854233828482501, 0.17381272129120037)