analitics

Pages

Showing posts with label opensimplex. Show all posts
Showing posts with label opensimplex. Show all posts

Thursday, December 8, 2016

Noise 2D, 3D, 4D with opensimplex python module.

OpenSimplex noise is an n-dimensional gradient noise function that was developed in order to overcome the patent-related issues surrounding Simplex noise, while continuing to also avoid the visually-significant directional artifacts characteristic of Perlin noise.
Let's start with instalation:
C:\Python27\Scripts>pip install OpenSimplex
Collecting OpenSimplex
Downloading opensimplex-0.2.tar.gz
Installing collected packages: OpenSimplex
Running setup.py install for OpenSimplex ... done
Successfully installed OpenSimplex-0.2

Test some examples from official page:
C:\Python27>python
Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:19:22) [MSC v.1500 32 bit (
Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from opensimplex import OpenSimplex
>>> tmp = OpenSimplex()
>>> print (tmp.noise2d(x=10, y=10))
-0.297251513589
>>> tmp = OpenSimplex(seed=1)
>>> print (tmp.noise2d(x=10, y=10))
-0.734782324747
>>> dir(OpenSimplex)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribut
e__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_e
x__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_
_weakref__', '_extrapolate2d', '_extrapolate3d', '_extrapolate4d', 'noise2d', 'n
oise3d', 'noise4d']

Let's make a image example with noise 2D:
from opensimplex import OpenSimplex
from PIL import Image

height = int(input("Enter in the map height: "))
width = int(input("Enter in the map width: "))

def main():
    simplex = OpenSimplex()
    im = Image.new('L', (width, height))
    for y in range(0, height):
        for x in range(0, width):
            value = simplex.noise2d(x , y )
            color = int((value + 1) * 128)
            im.putpixel((x, y), color)
    im.save('noise2d.png')
    im.show()
if __name__ == '__main__':
    main()