analitics

Pages

Monday, March 16, 2020

Python 3.5.2 : Detect motion and save images with opencv.

This script is simple to use it with a webcam or to parse a video file.
The main goal of this script is to see the difference in various frames of a video or webcam output.
The first frame of our video file will contain no motion and just background and then is compute the absolute difference.
There is no need to process the large, raw images straight from the video stream and this is the reason I convert the image to grayscale.
Some text is put on the window to show us the status string to indicate it is detection.
With this script I detect cars and peoples from my window, see the screenshot with these files:

Let's see the python script:
import argparse
import datetime
import imutils

import cv2

import time
from time import sleep

def saveJpgImage(frame):
    #process image
    img_name = "opencv_frame_{}.jpg".format(time)
    cv2.imwrite(img_name, frame)

def savePngImage():
    #process image
    img_name = "opencv_frame_{}.png".format(time)
    cv2.imwrite(img_name, frame)

# get argument parse
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the video file")
ap.add_argument("-s", "--size", type=int, default=480, help="minimum area size , default 480")
args = vars(ap.parse_args())

# if no video use webcam
if args.get("video", None) is None:
    camera = cv2.VideoCapture(0)
    #time.sleep(1.5)

# use video file
else:
    camera = cv2.VideoCapture(args["video"])


# frame from video is none 
first_frame = None

# loop into frames of the video
while True:
    # grab the current frame 
    (grabbed, frame) = camera.read()
    text = "undetected"

    # is no frame grabbed the is end of video 
    if not grabbed:
        break

    # resize the frame 
    frame = imutils.resize(frame, width=640)
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (21, 21), 0)

    # is first frame is none , make gray 
    if first_frame is None:
        first_frame = gray
        continue


    # compute difference from current frame and first frame 
    frameDelta = cv2.absdiff(first_frame, gray)
    first_frame = gray
    thresh = cv2.threshold(frameDelta, 1, 255, cv2.THRESH_BINARY)[1]

    # dilate the thresholded image to fill in holes
    # then find contours on thresholded image
    thresh = cv2.dilate(thresh, None, iterations=2)
    (cnts, _) = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                                 cv2.CHAIN_APPROX_SIMPLE)

    # loop contours 
    for c in cnts:
        # if the contour is too small, ignore it
        if cv2.contourArea(c) < args["size"]:
            continue

        # compute the bounding box for the contour
        # draw it on the frame,
        # and update the text
        (x, y, w, h) = cv2.boundingRect(c)
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 0)
        roi = frame[y:y+h, x:x+w]
        ts = time.time()
        st = datetime.datetime.fromtimestamp(ts).strftime('%d-%m-%Y_%H-%M-%S')
        # if the detection is on sized then save the image 
        if (w > h ) and (y + h) > 50 and (y + h) < 550:
            cv2.imwrite(st+"opencv.jpg", roi)
        # set text to show on gui 
        text = "detected"
    
    # draw the text and timestamp on the frame
    cv2.putText(frame, "Detect: {}".format(text), (10, 20),
                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
    cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"),
                (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)

    #show frame , thresh and frame_Delta
    cv2.imshow("Security Feed", frame)
    cv2.imshow("Thresh", thresh)
    cv2.imshow("Frame Delta", frameDelta)
    key = cv2.waitKey(1) &  0xFF

    # break from loop with q key 
    if key == ord("q"):
        break

# close camera and windows 
camera.release()
cv2.destroyAllWindows()

Wednesday, March 4, 2020

Python 3.6.9 : My colab tutorials - part 002.

This is another notebook with the Altair python package.
The development team comes with this intro:
Altair is a declarative statistical visualization library for Python, based on Vega and Vega-Lite.

Altair offers a powerful and concise visualization grammar that enables you to build a wide range of statistical visualizations quickly. Here is an example of using the Altair API to quickly visualize a dataset with an interactive scatter plot:

See the notebook at my GitHub account.

Sunday, March 1, 2020

Python 3.6.9 : My colab tutorials - part 001.

Today I start this tutorials series for the Colab tool.
To share my working with the Colab tool I created this GitHub project.
This project has two colab files :
catafest_001.ipynb  Created using Colaboratory  
catafest_002.ipynb  Created using Colaboratory 
First colab notebook come with a simple tutorial.
The next colab notebook is a little bit more complex and shares more information about how can deal with simples tasks on colab.
This is the table of contests for this colab notebook:
  • Table of contents
  • Select GPU for this notebook
  • Check with nvidia-smi
  • Check whether you have a visible GPU
  • Check with tensoflow test
  • Read information about hardware
  • Check cpuinfo
  • Check meminfo
  • Use Linux commands
  • Use python modules torch and fastai
  • Use python modules
  • Show and get information
  • Enter credentials with Username and Password:
  • Datatime fields
  • Raw fields
  • Number fields
  • Boolean fields
  • Pandas data fields
  • Upload files
  • Upload local files
  • Use the Jupyter Widgets

Python Qt5 : Create a spectrum equalizer.

I haven't written much for a while on these issues about python and PyQt5.
Today I will show a complex example of QtMultimedia and how to create a spectrum equalizer.
First, the PyQt5 bindings come with this python module named QtMultimedia.
The main reason was the lack of time and focus of my effort on more stringent elements of my life.
Let's start with the few lines of source code that show us how can use this python module.
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import PyQt5
>>> from PyQt5.QtMultimedia import *
>>> dir(PyQt5.QtMultimedia)
['QAbstractVideoBuffer', 'QAbstractVideoFilter', 'QAbstractVideoSurface', 'QAudio', 'QAudioBuffer',
 'QAudioDecoder', 'QAudioDeviceInfo', 'QAudioEncoderSettings', 'QAudioFormat', 'QAudioInput', 'QAudioOutput',
 'QAudioProbe', 'QAudioRecorder', 'QCamera', 'QCameraExposure', 'QCameraFocus', 'QCameraFocusZone',
 'QCameraImageCapture', 'QCameraImageProcessing', 'QCameraInfo', 'QCameraViewfinderSettings', 
 'QImageEncoderSettings','QMediaBindableInterface', 'QMediaContent', 'QMediaControl', 'QMediaMetaData', 
 'QMediaObject', 'QMediaPlayer', 'QMediaPlaylist', 'QMediaRecorder', 'QMediaResource', 'QMediaService', 
 'QMediaTimeInterval', 'QMediaTimeRange', 'QMultimedia', 'QRadioData', 'QRadioTuner', 'QSound', 'QSoundEffect',
 'QVideoEncoderSettings', 'QVideoFilterRunnable', 'QVideoFrame', 'QVideoProbe', 'QVideoSurfaceFormat',
 '__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__']
The next issue is creating a random equalizer effect with bars.

This source doesn't use the QtMultimedia but can be implemented in the random area of equalizer set by update_values function:
import random
import sys
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import Qt
from PyQt5.QtCore import pyqtSignal as Signal

print("load all modules!")

class Equalizer_Bars(QtWidgets.QWidget):

    def __init__(self, bars, steps, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # this fit the size to equalizer bars area
        self.setSizePolicy(
            QtWidgets.QSizePolicy.MinimumExpanding,
            QtWidgets.QSizePolicy.MinimumExpanding
        )
        # set the size of the window
        self.setMinimumHeight(480)
        self.setMinimumWidth(640)
        
        if isinstance(steps, list):
            # list of colours.
            self.n_steps = len(steps)
            self.steps = steps

        elif isinstance(steps, int):
            # int number of bars, defaults to blue.
            self.n_steps = steps
            self.steps = ['blue'] * steps
        else:
            raise TypeError('steps variable set wrong, try with a list or int')
        
        # create bars
        self.set_bars = bars
        # define settings of bars
        self.set_space_between_bars = 1
        self.set_height_of_bars = 1
        # set color of background
        self.set_background_color = QtGui.QColor('white')
        # set padding by pixel .
        self.set_padding = 10  

        # create timer 
        self.set_timer = None
        # set decay for move bars 
        self.set_decay_frequency_ms(76)
        self.set_decay_value= 10

        # set values for minim and maxim 
        self.set_min_value = 0
        self.set_max_value = 100

        # store all current values in a list.
        self.set_all_values= [0.0] * bars


    def paintEvent(self, e):
        # create a painter
        painter = QtGui.QPainter(self)
        # create a brush for drawing 
        brush = QtGui.QBrush()
        brush.setColor(self.set_background_color)
        brush.setStyle(Qt.SolidPattern)
        rect = QtCore.QRect(0, 0, painter.device().width(), painter.device().height())
        painter.fillRect(rect, brush)
        
        # set the canvas.
        d_height = painter.device().height() - (self.set_padding * 2)
        d_width = painter.device().width() - (self.set_padding * 2)

        # set the bars.
        step_y = d_height / self.n_steps
        bar_height = step_y * self.set_height_of_bars
        bar_height_space = step_y * (1 - self.set_space_between_bars) / 2

        step_x = d_width / self.set_bars
        bar_width = step_x * self.set_space_between_bars
        bar_width_space = step_x * (1 - self.set_height_of_bars) / 2

        for i in range(self.set_bars):

            # calculating the y position for this bar for stop, from the value in range.
            c = (self.set_all_values[i] - self.set_min_value) / (self.set_max_value - self.set_min_value)
            n_steps_to_draw = int(c * self.n_steps)

            for n in range(n_steps_to_draw):
                brush.setColor(QtGui.QColor(self.steps[n]))
                rect = QtCore.QRect(
                    self.set_padding + (step_x * i) + bar_width_space,
                    self.set_padding + d_height - ((1 + n) * step_y) + bar_height_space,
                    bar_width,
                    bar_height
                )
                painter.fillRect(rect, brush)

        painter.end()

    def _trigger_refresh(self):
        self.update()

    def set_decay_trick(self, f):
        self.set_decay_value= float(f)

    def set_decay_frequency_ms(self, ms):
        if self.set_timer:
            self.set_timer.stop()

        if ms:
            self.set_timer = QtCore.QTimer()
            self.set_timer.setInterval(ms)
            self.set_timer.timeout.connect(self.set_decay_beat)
            self.set_timer.start()

    def set_decay_beat(self):
        self.set_all_values= [
            max(0, v - self.set_decay_value)
            for v in self.set_all_values
        ]
        self.update()  # Redraw new position.

    def size_values(self, v):
        self.set_all_values= v
        self.update()

    def values(self):
        return self.set_all_values

    def set_range(self, vmin, vmax):
        assert float(vmin) < float(vmax)
        self.set_min_value, self.set_max_value = float(vmin), float(vmax)
    # will be used with QBrush 
    def setColor(self, color):
        self.steps = [color] * self._bar.n_steps
        self.update()

    def set_color_bars(self, colors):
        self.n_steps = len(colors)
        self.steps = colors
        self.update()

    def set_bar_padding(self, i):
        self.set_padding = int(i)
        self.update()

    def set_bar_solid_percent(self, f):
        self._bar_solid_percent = float(f)
        self.update()

    def set_background_color(self, color):
        self.set_background_color = QtGui.QColor(color)
        self.update()


class Window(QtWidgets.QMainWindow):

    def __init__(self):
        super().__init__()

        self.equalizer = Equalizer_Bars(8, \
        ['#00405e', '#3350a1', '#386787','#0088ba','#3396e6', '#00b9d0','#c1f9f9', '#cce2f7'])

        self.setCentralWidget(self.equalizer)

        self.set_timer = QtCore.QTimer()
        self.set_timer.setInterval(100)
        self.set_timer.timeout.connect(self.update_values)
        self.set_timer.start()

    def update_values(self):
        self.equalizer.size_values([
            min(100, i+random.randint(0, 500) if random.randint(0, 10) > 2 else i)
            for i in self.equalizer.values()
            ])
            
# start the program 
app = QtWidgets.QApplication([])
w = Window()
w.show()
app.exec_()

Thursday, February 27, 2020

Python 3.6.9 : Google give a new tool for python users.

Today I discovered a real surprise gift made by the team from Google for the evolution of programmers.
I say this because not everyone can afford hardware resources.
This gift is a new tool called Colab and uses these versions of python and sys:
Python version
3.6.9 (default, Nov  7 2019, 10:44:02) 
[GCC 8.3.0]
Version info.
sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)
This utility allows you to run source code that requires online hardware resources using your google account.
Colab allows you to use and share Jupyter notebooks because is an open-source project on which Colab is based.
The types of GPUs that are available in Colab varies over time.
This is necessary for Colab to be able to provide access to these resources for free.
The GPUs available in Colab often include Nvidia K80s, T4s, P4s, and P100s.
This way you can test demanding modules like the python TensorFlow module.
The utility is free but you can pay extra for more hardware resources.
Colab notebooks are stored in Google Drive, or can be loaded from GitHub.
You can see a simple intro with a notebook on my GitHub account.

Tuesday, February 25, 2020

Python 3.7.6 : The new concepts of execution in python 3 - part 001.

The main goal of these tutorials series is learning to deal with python source code using the new concepts of execution in python 3.
When two or more events are concurrent it means that they are happening at the same time.
Concurrent programming is not equivalent to parallel execution.
In computing, concurrency is the execution of pieces of work or tasks by a computer at the same time.
Concurrency is a property which more than one operation can be run simultaneously.
When multiple computations or operations are carried out at the same time or in parallel with the goal of speeding up the computation process then this process is named parallelism.
Parallelism is a property which operations are actually being run simultaneously using the multiprocessing.
Multiprocessing, on the other hand, involves utilizing two or more processor units on a computer to achieve parallelism.
Multithreading is a property that refers to the ability of a CPU to execute multiple threads concurrently.
Python’s concurrency methods including threading, multiprocessing, and asyncio.
The difference between the threading and multiprocessing is this: the threading module uses threads, the multiprocessing module uses processes.
The threading is the package that provides API to create and manage threads.
With multiprocessing, Python creates new processes using an API similar to the threading module.
The asyncio is a library to write concurrent code using the async/await syntax.
The keyword async indicates that our function is a coroutine meaning they choose when to pause and let others execute and run coroutines multitask cooperatively.
The three fundamental advantages of async and await over threads are:
  • cooperative multitasking - you can reasonably have millions of concurrent tasks;
  • using await makes visible where the schedule points;
  • if a task doesn’t yield then it can accidentally block all other tasks from running;
  • tasks can support cancellation.
The next source of code show us how can deal with the execution code in Python 3 using the threading and multiprocessing python packages.
The timeit python package is used to benchmark the code write in the code_to_test variable:
Let's test the multi-threading execution with python:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> code_to_test = """
... import threading
... 
... text = "Hello World"
... 
... def print_text(text):
...     for char in text:
...             print (char)
... 
... # multi-threading execution
... def multi_threads():
...     thread_1 = threading.Thread(target=print_text(text))
...     thread_2 = threading.Thread(target=print_text(text))
...     thread_1.start()
...     thread_2.start()
...     thread_1.join()
...     thread_2.join()
... multi_threads()
... """
>>> 
>>> elapsed_time = timeit.timeit(code_to_test, number=1)
H
e
l
l
o
 
W
o
r
l
d
H
e
l
l
o
 
W
o
r
l
d
>>> print(elapsed_time)
0.010613240000566293
Let's test the serially execution with python:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> code_to_test = """
... import threading
... 
... text = "Hello World"
... 
... def print_text(text):
...     for char in text:
...             print (char)
... # serially execution
... def serially():
...     print_text(text)
...     print_text(text)
... serially()
... """
>>> elapsed_time = timeit.timeit(code_to_test, number=1)
H
e
l
l
o
 
W
o
r
l
d
H
e
l
l
o
 
W
o
r
l
d
>>> print(elapsed_time)
0.011771811000471644
Let's test the multiprocessing execution with python:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> code_to_test = """
... import multiprocessing
... 
... text = "Hello World"
... 
... def print_text(text):
...     for char in text:
...             print (char)
... 
... # multiprocessing execution
... def multiprocessing_test():
...      process_1 = multiprocessing.Process(target=print_text(text))
...      process_2 = multiprocessing.Process(target=print_text(text))
...      process_1.start()
...      process_2.start()
...      process_1.join()
...      process_2.join()
... multiprocessing_test()
... """
>>> elapsed_time = timeit.timeit(code_to_test, number=1)
H
e
l
l
o
 
W
o
r
l
d
H
e
l
l
o
 
W
o
r
l
d
>>> print(elapsed_time)
0.3649730779998208
Since asyncio is a little complex, I will write about this in the next tutorial.