analitics

Pages

Sunday, July 28, 2019

Python 3.7.3 : Using the flask - part 003.

Another tutorial with python 3.7.3 and flask python module.
In the last tutorial, I speak about some tricks and tips.
Today, I will show some steps for fixing and run with flask-sqlalchemy.
The source code from my GitHub account can be updated with this source code.
app = Flask (__name__)
app.config['SECRET_KEY'] = 'abcdefg'
# set SQLAlchemy
basedir = os.path.abspath(os.path.dirname(__file__))
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(basedir, 'server.sqlite')
db = SQLAlchemy(app)
ma = Marshmallow(app)
class User(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(80), unique=True)
    email = db.Column(db.String(120), unique=True)

    def __init__(self, username, email):
        self.username = username
        self.email = email
If you run it then you get this:
C:\Python373\my_flask>python
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD6
4)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from server import db
C:\Python373\lib\site-packages\flask_sqlalchemy\__init__.py:835: FSADeprecationW
arning: SQLALCHEMY_TRACK_MODIFICATIONS adds significant overhead and will be dis
abled by default in the future.  Set it to True or False to suppress this warnin
g.
  'SQLALCHEMY_TRACK_MODIFICATIONS adds significant overhead and '
You will have a database file named server.sqlite.
#app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
Let's create and show the database:
C:\Python373\my_flask>python
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD6
4)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from server import db
>>> db.create_all()
>>> db.engine.table_names()
['user']
A good approach is to create a config.py file and used into the application area.
The config.py file will have this source code:
SQLALCHEMY_TRACK_MODIFICATIONS = False
SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'server.sqlite')
DEBUG=True
The server.py has this source code:
...
app = Flask (__name__)
app.config.from_pyfile('config.py')
db = SQLAlchemy(app)
...

Saturday, July 27, 2019

Python 3.7.3 : About pytweening python module.

This is a simple module of tweening and easing functions implemented in Python, see the GitHub webpage.
C:\Python373\Scripts>pip install pytweening
Collecting pytweening
Downloading https://files.pythonhosted.org/packages/b9/f8/c32a58d6e4dff8aa5c27
e907194d69f3b57e525c2e4af96f39c6e9c854d2/PyTweening-1.0.3.zip
Building wheels for collected packages: pytweening
Building wheel for pytweening (setup.py) ... done
Created wheel for pytweening: filename=PyTweening-1.0.3-cp37-none-any.whl size
=3821 sha256=6655c055d779982ff1259a5266bf1300c1cd02046e45e92cf18b20053a326531
Stored in directory: C:\Users\catafest\AppData\Local\pip\Cache\wheels\7b\92\30
\06e21159eed2709436bfb6d7c690959e578cf74f029643866e
Successfully built pytweening
Installing collected packages: pytweening
Successfully installed pytweening-1.0.3
Let's test it:
C:\Python373>python.exe
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 22:22:05) [MSC v.1916 64 bit (AMD6
4)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pytweening
>>> dir(pytweening)
['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__',
'__package__', '__path__', '__spec__', '__version__', '_checkRange', 'division',
 'easeInBack', 'easeInBounce', 'easeInCirc', 'easeInCubic', 'easeInElastic', 'ea
seInExpo', 'easeInOutBack', 'easeInOutBounce', 'easeInOutCirc', 'easeInOutCubic'
, 'easeInOutElastic', 'easeInOutExpo', 'easeInOutQuad', 'easeInOutQuart', 'easeI
nOutQuint', 'easeInOutSine', 'easeInQuad', 'easeInQuart', 'easeInQuint', 'easeIn
Sine', 'easeOutBack', 'easeOutBounce', 'easeOutCirc', 'easeOutCubic', 'easeOutEl
astic', 'easeOutExpo', 'easeOutQuad', 'easeOutQuart', 'easeOutQuint', 'easeOutSi
ne', 'getLine', 'getPointOnLine', 'linear', 'math']
>>> pytweening.linear(0.1)
0.1
>>> pytweening.easeInOutSine(0.1)
0.024471741852423234
>>> pytweening.easeInQuad(0.1)
0.010000000000000002
>>> pytweening.getLine(0, 0, 0.1, 0.1)
[(0, 0)]
>>> pytweening.getLine(0, 0, 1.1, 1.1)
[(0, 0), (1, 1)]
For example, this module can help with some math function:
  • simple linear tweening - no easing, no acceleration;
  • quadratic easing in/out - acceleration until halfway, then deceleration;
  • cubic easing in/out - acceleration until halfway, then deceleration;
  • quartic easing in/out - acceleration until halfway, then deceleration;
  • sinusoidal easing in/out - accelerating until halfway, then decelerating;
  • ...

Friday, July 26, 2019

Python 3.7.3 : Tonny I.D.E. for python programmers.

Today I tested the Thonny I.D.E. from thonny.org official webpage.
Yesterday I tried several editors for python programming language and did not work.
One of these is the spyder editor that does not work with python 3.7.3 - we have not discovered why.
The Mu is a simple Python editor for beginner programmers and has a strange working I.D.E. for good and fast development.
The PyCharm, it is developed by the Czech company JetBrains is not fully free ...

The Thonny I.D.E. is fast and comes with two good features:
Code completion and Highlights syntax errors.
The install steps are easy with a wizard application.
After that, you can test with any python source code.
The source code from the image is a simple example from this webpage.
Let's see a screenshot:

This is a video tutorial with this I.D.E. from Aivar Annamaa user:



Thursday, July 25, 2019

Python 3.7.3 : Using the flask - part 002.

Let's see some tips for starting any project with flask python module.
Use these python modules to work with databases: flask-sqlalchemy and flask_marshmallow.
The Flask-SQLAlchemy is an extension for Flask that adds support for SQLAlchemy to your application.
The marshmallow is an ORM/ODM/framework-agnostic library for converting complex datatypes, such as objects, to and from native Python datatypes.
Let's install it:
C:\Python373>cd Scripts

C:\Python373\Scripts>pip install flask-sqlalchemy
Collecting flask_sqlalchemy
...
Successfully installed flask-sqlalchemy-2.4.0
C:\Python373\Scripts>pip install flask_marshmallow
Collecting flask_marshmallow
...
Successfully installed flask-marshmallow-0.10.1 marshmallow-2.19.5
C:\Python373\Scripts>pip install marshmallow-sqlalchemy
Collecting marshmallow-sqlalchemy
...
Successfully installed marshmallow-sqlalchemy-0.17.0
Use these python modules for login and authorization issues: flask-login
The Flask-Login provides user session management for Flask. It handles the common tasks of logging in, logging out, and remembering your users’ sessions over extended periods of time.
Flask-login doesn't actually have a user backend, it just handles the session machinery to help you to log in and logout users.
Flask-Login can work with user models that are based on any database system with four required items: is_authenticated, is_active, is_anonymous and get_id.
Let's install it:
C:\Python373\Scripts>pip install flask-login
Collecting flask-login
...
Successfully installed flask-login-0.4.1
This python module named python-dotenv let us to reads the key-value pair from .env file and adds them to an environment variable.
C:\Python373\Scripts>pip install python-dotenv
Collecting python-dotenv
...
Successfully installed python-dotenv-0.10.3
Flask-Login provides a UserMixin which makes it easy to create a user class, see example class User:
from flask_login import UserMixin
...
class User(UserMixin, db.Model):
Another tip is to use the get_or_404 and first_or_404 to avoid show errors on the webpage.
Reduce the passing of multiple variables to render_template, let's see the example:
from flask import render_template
...
return render_template('index.html', fn=name.first, ln=name.last, day=student.day, 
.... ')
This can de easy fix with this code to send value I want to pass:
context = {
'fn': name.first,
'ln': name.last,
'day': student.day,
...
}
return render_template('index.html', **context)
Use query to solve complex tasks.
Let's see a simple example of delete from a Student database class:
...
class Student(db.Model):
id=db.Column(db.Integer, primary_key=True)
...
country=db.Column(db.String(2))
...
Let's delete this with a query and return the number of deleted by delete_count:
del_ids= db.session.query(Student.id).filter(Student.country=='Ro')
delete_count=db.session.query(Student).filter(Student.id.in_(del_ids.subquery())).delete(synchronize_session=False)
I used two files in the main project named .env and .flaskenv:
The file .env comes with:
SQLALCHEMY_DATABASE_URI=sqlite:///db.sqlite3
SECRET_KEY = abcdef
The file .flaskenv has these lines of source code:
FLASK_ENV = development
FLASK_APP = my_flask_app
This can be used into a new file named settings.py:
import os 
SQLALCHEMY_DATABASE_URI = os.environ.get('SQLALCHEMY_DATABASE_URI')
SECRET_KEY = os.environ.get('SECRET_KEY')
SQLALCHEMY_TRACK_MODIFICATIONS = False
Using this the main flask application will start like this:
from flask import Flask
def create_my_app(config_file='settings.py'):
    app = Flask(__name__)
    app.config.from_pyfile(config_file)
    return app
There are plenty of tips and tricks that can be found based on the project in the bottle.
These are the most used.


Wednesday, July 24, 2019

Python 3.7.3 : Testing the timeit and Bokeh python module.

The tutorial today has several goals:
  • testing the timeit function to measure the execution time of a line of print code;
  • using python lists to record data;
  • generate lists using the range function;
  • multiplying a number with an entire list of numbers;
  • how to use the bokeh module with CustomJSHover and HoverTool
Let's test with the timeit python module, see the official webpage.
This module provides a simple way to time small bits of Python code. It has both a Command-Line Interface as well as a callable one. It avoids a number of common traps for measuring execution times.
C:\Python373>python.exe
Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 21:26:53) [MSC v.1916 32 bit (Inte
l)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> import random
>>> timeit.timeit('print("a")',number=1)
a
0.00013114200010022614
>>> timeit.timeit('print("a")',number=100)
...
a
0.007177434000027461
>>> timeit.timeit('print("a")',number=1000)
...
a
0.07585798000002342
Let make more visible the results with the bokeh python module:
import timeit
import random

# if you want to use numpy 
#import numpy as np

# import bokeh python module 
from bokeh.plotting import figure, show, output_file
# for show values
from bokeh.models.tools import CustomJSHover
from bokeh.models import HoverTool
print ('''
You can tests a number of times named l
with a number of print named i
and see the result value with bokeh python module
timeit.timeit('print("a")',number = i)
''')
i = int(input('The increment number i:'))
l = int(input('The number of test l:'))

# create the list with the output values
timit_list = []
# create the test function for l and i and return the list
def get_timeit(i,l):
 while i < l:
  i += 1
  out=timeit.timeit('print("a")',number = i)
  timit_list.append(out)
 return timit_list

# run the test function with l and i
# this will be coordinate y
yt=get_timeit(i,l)

# show result of the test 
print(yt)

# create the coordinate x
xt = [i for i in range(0, len(yt))]

#xt = np.linspace(0, l, l)
# print the coordinate x
#print(xt)

# create the output HTML file to see the result
output_file("test.html")

# create a figure with a timeit type y-axis
fig = figure(title='timit_list values for print("a")',
             plot_height=400, plot_width=700,
             x_axis_label='x has each incrementation of i', y_axis_label='value of timeit of print the char a',
             x_minor_ticks=3, 
             toolbar_location=None)

# create a circle for each value
# see new multiplication with a list 
# y=[i * 100 for i in yt]
fig.circle(x=xt, y=[i * 100 for i in yt], 
         color='blue', size=5,
         legend='Values')

x_custom = CustomJSHover(code="""
    return '' + special_vars.data_x""")

y_custom = CustomJSHover(code="""
    return '' + special_vars.data_y""")

fig.add_tools(
    HoverTool(
        show_arrow=True, 
        tooltips=[
 ('xt', '$data_x'),
 ('yt', '$data_y')
        ],
        formatters=dict(
            xt=x_custom,
            yt=y_custom
        )
    )
)

# Put the legend in the upper left corner
fig.legend.location = 'top_left'

# Let's check it out
show(fig)
The result of this python source code can be found on my YouTube channel: