The 2025 election for the PSF Board :
- Abigail Dogbe
- Jannis Leidel
- Sheena O’Connell
- Simon Willison
Is a blog about python programming language. You can see my work with python programming language, tutorials and news.
import subprocess
import sys
import os
import shutil
import importlib.util
import re
import concurrent.futures
from typing import List, Tuple, Set
class ModuleManager:
def __init__(self):
self.modules: Set[str] = set()
self.pip_path = self._get_pip_path()
def _get_pip_path(self) -> str:
possible_path = os.path.join(sys.exec_prefix, "Scripts", "pip.exe")
return shutil.which("pip") or (possible_path if os.path.exists(possible_path) else None)
def extract_imports_from_file(self, file_path: str) -> List[Tuple[str, str]]:
imports = []
try:
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
# Detect 'import module'
import_match = re.match(r'^\s*import\s+([a-zA-Z0-9_]+)(\s+as\s+.*)?$', line)
if import_match:
module = import_match.group(1)
imports.append((module, line.strip()))
continue
# Detect 'from module import ...'
from_match = re.match(r'^\s*from\s+([a-zA-Z0-9_]+)\s+import\s+.*$', line)
if from_match:
module = from_match.group(1)
imports.append((module, line.strip()))
except FileNotFoundError:
print(f"❌ Fișierul {file_path} nu a fost găsit.")
except Exception as e:
print(f"❌ Eroare la citirea fișierului {file_path}: {e}")
return imports
def scan_directory_for_py_files(self, directory: str = '.') -> List[str]:
py_files = []
for root, _, files in os.walk(directory):
for file in files:
if file.endswith('.py'):
py_files.append(os.path.join(root, file))
return py_files
def collect_unique_modules(self, directory: str = '.') -> None:
py_files = self.scan_directory_for_py_files(directory)
all_imports = []
with concurrent.futures.ThreadPoolExecutor() as executor:
future_to_file = {executor.submit(self.extract_imports_from_file, file_path): file_path for file_path in py_files}
for future in concurrent.futures.as_completed(future_to_file):
imports = future.result()
all_imports.extend(imports)
for module, _ in all_imports:
self.modules.add(module)
def is_module_installed(self, module: str) -> bool:
return importlib.util.find_spec(module) is not None
def run_pip_install(self, module: str) -> bool:
if not self.pip_path:
print(f"❌ Nu am găsit pip pentru {module}.")
return False
try:
subprocess.check_call([self.pip_path, "install", module])
print(f"✅ Pachetul {module} a fost instalat cu succes.")
return True
except subprocess.CalledProcessError as e:
print(f"❌ Eroare la instalarea pachetului {module}: {e}")
return False
def check_and_install_modules(self) -> None:
def process_module(module):
print(f"\n🔎 Verific dacă {module} este instalat...")
if self.is_module_installed(module):
print(f"✅ {module} este deja instalat.")
else:
print(f"📦 Instalez {module}...")
self.run_pip_install(module)
# Re-verifică după instalare
if self.is_module_installed(module):
print(f"✅ {module} funcționează acum.")
else:
print(f"❌ {module} nu funcționează după instalare.")
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(process_module, self.modules)
def main():
print("🔍 Verific pip...")
manager = ModuleManager()
if manager.pip_path:
print(f"✅ Pip este disponibil la: {manager.pip_path}")
else:
print("⚠️ Pip nu este disponibil.")
return
directory = sys.argv[1] if len(sys.argv) > 1 else '.'
print(f"\n📜 Scanez directorul {directory} pentru fișiere .py...")
manager.collect_unique_modules(directory)
if not manager.modules:
print("⚠️ Nu s-au găsit module în importuri.")
return
print(f"\nModule unice detectate: {', '.join(manager.modules)}")
manager.check_and_install_modules()
if __name__ == "__main__":
main()
python catafest_build_package_001.py
🔍 Verificare module standard...
[✓] Modul standard 'json' este disponibil.
[✓] Modul standard 'subprocess' este disponibil.
[✓] Modul standard 'platform' este disponibil.
[✓] Modul standard 'datetime' este disponibil.
[✓] Modul standard 'os' este disponibil.
[✓] Modul standard 'sys' este disponibil.
📦 Verificare și instalare module pip...
[✓] Modulul 'PyQt6' este deja instalat.
[✓] Modulul 'build' este deja instalat.
* Creating isolated environment: venv+pip...
* Installing packages in isolated environment:
- setuptools
- wheel
...
import torch
import torch.nn as nn
import numpy as np
data = np.array([
[1800.5, 1810.0, 1795.0, 1000, 1805.2],
[1805.2, 1815.0, 1800.0, 1200, 1812.8],
[1812.8, 1820.0, 1808.0, 1100, 1810.5],
[1810.5, 1818.0, 1805.0, 1300, 1825.0],
[1825.0, 1830.0, 1815.0, 1400, 1820.3],
[1820.3, 1828.0, 1810.0, 1250, 1835.7]
])
X, y = torch.tensor(data[:, :4], dtype=torch.float32), torch.tensor(data[:, 4], dtype=torch.float32)
model = nn.Sequential(nn.Linear(4, 6), nn.ReLU(), nn.Linear(6, 4), nn.ReLU(), nn.Linear(4, 1))
optimizer = torch.optim.Adam(model.parameters())
loss_fn = nn.MSELoss()
for _ in range(3000):
optimizer.zero_grad()
y_pred = model(X).squeeze()
loss = loss_fn(y_pred, y)
loss.backward()
optimizer.step()
prediction = model(torch.tensor([[1830.0, 1840.0, 1825.0, 1150]], dtype=torch.float32))
print("Predicted XAU/USD closing price:", round(prediction.item(), 2))
python torch_001.py
Predicted XAU/USD closing price: 1819.57
import tensorflow as tf
import numpy as np
data = np.array([
[1800.5, 1810.0, 1795.0, 1000, 1805.2],
[1805.2, 1815.0, 1800.0, 1200, 1812.8],
[1812.8, 1820.0, 1808.0, 1100, 1810.5],
[1810.5, 1818.0, 1805.0, 1300, 1825.0],
[1825.0, 1830.0, 1815.0, 1400, 1820.3],
[1820.3, 1828.0, 1810.0, 1250, 1835.7]
])
X, y = data[:, :4], data[:, 4]
model = tf.keras.Sequential([
tf.keras.layers.Dense(6, activation='relu', input_shape=(4,)),
tf.keras.layers.Dense(4, activation='relu'),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.fit(X, y, epochs=3000, verbose=0)
prediction = model.predict(np.array([[1830.0, 1840.0, 1825.0, 1150]]))
print("Predicted XAU/USD closing price:", round(prediction[0][0], 2))
python tf_001.py
2025-08-30 21:11:13.966066: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
C:\Python313\Lib\site-packages\google\protobuf\runtime_version.py:98: UserWarning: Protobuf gencode version 5.28.3 is exactly one major version older than the runtime version 6.31.1 at tensorflow/core/framework/attr_value.proto. Please update the gencode to avoid compatibility violations in the next runtime release.
...
Predicted XAU/USD closing price: 2.9
from sklearn.neural_network import MLPRegressor
import numpy as np
data = np.array([
[1800.5, 1810.0, 1795.0, 1000, 1805.2],
[1805.2, 1815.0, 1800.0, 1200, 1812.8],
[1812.8, 1820.0, 1808.0, 1100, 1810.5],
[1810.5, 1818.0, 1805.0, 1300, 1825.0],
[1825.0, 1830.0, 1815.0, 1400, 1820.3],
[1820.3, 1828.0, 1810.0, 1250, 1835.7]
])
X, y = data[:, :4], data[:, 4]
model = MLPRegressor(hidden_layer_sizes=(6, 4), max_iter=3000)
model.fit(X, y)
prediction = model.predict([[1830.0, 1840.0, 1825.0, 1150]])
print("Predicted XAU/USD closing price:", round(prediction[0], 2))
import os
import subprocess
from PyQt6.QtWidgets import (
QApplication, QWidget, QVBoxLayout, QPushButton,
QListWidget, QMessageBox
)
# fisier download : yt-dlp.exe -vU https://www.youtube.com/watch?v=xxxxxx -f bestvideo*+bestaudio/best
FOLDER_PATH = r"D:\Software"
class FFmpegMerger(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle("Combinare Video + Audio cu FFmpeg")
self.resize(600, 400)
self.layout = QVBoxLayout()
self.file_list = QListWidget()
self.process_button = QPushButton("Prelucrează în MP4")
self.layout.addWidget(self.file_list)
self.layout.addWidget(self.process_button)
self.setLayout(self.layout)
self.process_button.clicked.connect(self.process_files)
self.populate_file_list()
def populate_file_list(self):
files = os.listdir(FOLDER_PATH)
video_files = [f for f in files if f.endswith(".f401.mp4")]
audio_files = [f for f in files if f.endswith(".f251-9.webm")]
base_names = set(f.split(".f401.mp4")[0] for f in video_files)
candidates = []
for base in base_names:
audio_name = f"{base}.f251-9.webm"
output_name = f"{base}.mp4"
if audio_name in audio_files and output_name not in files:
candidates.append(base)
for name in candidates:
self.file_list.addItem(name)
def process_files(self):
for i in range(self.file_list.count()):
base = self.file_list.item(i).text()
video_path = os.path.join(FOLDER_PATH, f"{base}.f401.mp4")
audio_path = os.path.join(FOLDER_PATH, f"{base}.f251-9.webm")
output_path = os.path.join(FOLDER_PATH, f"{base}.mp4")
cmd = [
"ffmpeg",
"-i", video_path,
"-i", audio_path,
"-c:v", "copy",
"-c:a", "aac",
"-strict", "experimental",
output_path
]
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
QMessageBox.critical(self, "Eroare", f"Eroare la procesarea {base}: {e}")
return
QMessageBox.information(self, "Succes", "Toate fișierele au fost prelucrate cu succes!")
if __name__ == "__main__":
app = QApplication([])
window = FFmpegMerger()
window.show()
app.exec()
pip install geoai-py
Successfully installed Flask-Caching-2.3.1 MarkupSafe-3.0.2 PySocks-1.7.1 PyYAML-6.0.2 absl-py-2.3.1 aenum-3.1.16 affine-2.4.0 aiohappyeyeballs-2.6.1 aiohttp-3.12.14 aiosignal-1.4.0 albucore-0.0.24 albumentations-2.0.8 aniso8601-10.0.1 annotated-types-0.7.0 antlr4-python3-runtime-4.9.3 anyio-4.9.0 anywidget-0.9.18 argon2-cffi-25.1.0 argon2-cffi-bindings-21.2.0 arrow-1.3.0 asttokens-3.0.0 beautifulsoup4-4.13.4 bitsandbytes-0.46.1 bleach-6.2.0 blinker-1.9.0 bqplot-0.12.45 branca-0.8.1 buildingregulariser-0.2.2 cachelib-0.13.0 cachetools-6.1.0 cffi-1.17.1 click-8.2.1 click-plugins-1.1.1.2 cligj-0.7.2 color-operations-0.2.0 comm-0.2.2 contextily-1.6.2 contourpy-1.3.2 cycler-0.12.1 datasets-4.0.0 decorator-5.2.1 defusedxml-0.7.1 dill-0.3.8 docstring-parser-0.17.0 duckdb-1.3.2 einops-0.8.1 eval-type-backport-0.2.2 ever-beta-0.5.1 executing-2.2.0 fastjsonschema-2.21.1 filelock-3.18.0 fiona-1.10.1 flask-3.1.1 flask-cors-6.0.1 flask-restx-1.3.0 folium-0.20.0 fonttools-4.59.0 fqdn-1.5.1 frozenlist-1.7.0 fsspec-2025.3.0 gdown-5.2.0 geoai-py-0.9.0 geographiclib-2.0 geojson-3.2.0 geopandas-1.1.1 geopy-2.4.1 gitdb-4.0.12 gitpython-3.1.44 grpcio-1.73.1 h11-0.16.0 httpcore-1.0.9 httpx-0.28.1 huggingface_hub-0.33.4 hydra-core-1.3.2 importlib-resources-6.5.2 ipyevents-2.0.2 ipyfilechooser-0.6.0 ipyleaflet-0.20.0 ipython-9.4.0 ipython-pygments-lexers-1.1.1 ipytree-0.2.2 ipyvue-1.11.2 ipyvuetify-1.11.3 ipywidgets-8.1.7 isoduration-20.11.0 itsdangerous-2.2.0 jedi-0.19.2 jinja2-3.1.6 joblib-1.5.1 jsonargparse-4.40.0 jsonnet-0.21.0 jsonpointer-3.0.0 jupyter-client-8.6.3 jupyter-core-5.8.1 jupyter-events-0.12.0 jupyter-leaflet-0.20.0 jupyter-server-2.16.0 jupyter-server-proxy-4.4.0 jupyter-server-terminals-0.5.3 jupyterlab-pygments-0.3.0 jupyterlab_widgets-3.0.15 kiwisolver-1.4.8 kornia-0.8.1 kornia_rs-0.1.9 leafmap-0.48.6 lightly-1.5.21 lightly_utils-0.0.2 lightning-2.5.2 lightning-utilities-0.14.3 localtileserver-0.10.6 mapclassify-2.10.0 maplibre-0.3.4 markdown-3.8.2 markdown-it-py-3.0.0 matplotlib-3.10.3 matplotlib-inline-0.1.7 mdurl-0.1.2 mercantile-1.2.1 mistune-3.1.3 morecantile-6.2.0 multidict-6.6.3 multiprocess-0.70.16 narwhals-1.48.0 nbclient-0.10.2 nbconvert-7.16.6 nbformat-5.10.4 numexpr-2.11.0 omegaconf-2.3.0 opencv-python-headless-4.12.0.88 overrides-7.7.0 overturemaps-0.15.0 pandas-2.3.1 pandocfilters-1.5.1 parso-0.8.4 planetary-computer-1.0.0 plotly-6.2.0 prettytable-3.16.0 prometheus-client-0.22.1 prompt_toolkit-3.0.51 propcache-0.3.2 psygnal-0.14.0 pure-eval-0.2.3 pyarrow-21.0.0 pycparser-2.22 pydantic-2.11.7 pydantic-core-2.33.2 pygments-2.19.2 pyogrio-0.11.0 pyparsing-3.2.3 pyproj-3.7.1 pystac-1.13.0 pystac-client-0.9.0 python-box-7.3.2 python-dateutil-2.9.0.post0 python-dotenv-1.1.1 python-json-logger-3.3.0 pytorch_lightning-2.5.2 pytz-2025.2 pywin32-311 pywinpty-2.0.15 pyzmq-27.0.0 rasterio-1.4.3 regex-2024.11.6 rfc3339-validator-0.1.4 rfc3986-validator-0.1.1 rich-14.0.0 rio-cogeo-5.4.2 rio-tiler-7.8.1 rioxarray-0.19.0 rtree-1.4.0 safetensors-0.5.3 scikit-learn-1.7.1 scooby-0.10.1 segmentation-models-pytorch-0.5.0 send2trash-1.8.3 sentry-sdk-2.33.0 server-thread-0.3.0 shapely-2.1.1 simpervisor-1.0.0 simsimd-6.5.0 six-1.17.0 smmap-5.0.2 sniffio-1.3.1 soupsieve-2.7 stack_data-0.6.3 stringzilla-3.12.5 tensorboard-2.20.0 tensorboard-data-server-0.7.2 tensorboardX-2.6.4 terminado-0.18.1 threadpoolctl-3.6.0 timm-1.0.17 tinycss2-1.4.0 tokenizers-0.21.2 torch-2.7.1 torchange-0.0.1 torchgeo-0.7.1 torchinfo-1.8.0 torchmetrics-1.7.4 torchvision-0.22.1 tornado-6.5.1 traitlets-5.14.3 traittypes-0.2.1 transformers-4.53.2 types-python-dateutil-2.9.0.20250708 typeshed-client-2.8.2 typing-inspection-0.4.1 tzdata-2025.2 uri-template-1.3.0 uvicorn-0.35.0 wandb-0.21.0 wcwidth-0.2.13 webcolors-24.11.1 webencodings-0.5.1 websocket-client-1.8.0 werkzeug-3.1.3 whitebox-2.3.6 whiteboxgui-2.3.0 widgetsnbextension-4.0.14 xarray-2025.7.1 xxhash-3.5.0 xyzservices-2025.4.0 yarl-1.20.1
>>> import geoai
>>> dir(geoai)
['AgricultureFieldDelineator', 'Any', 'AutoConfig', 'AutoModelForMaskGeneration',
'AutoModelForMaskedImageModeling', 'AutoProcessor', 'BoundingBox', 'BuildingFootprintExtractor',
'CLIPSegForImageSegmentation', 'CLIPSegProcessor', 'CLIPSegmentation', 'CarDetector',
'ChangeDetection', 'CustomDataset', 'DetectionResult', 'Dict', 'ET', 'GroundedSAM', 'Image',
'Iterable', 'List', 'Map', 'MapLibre', 'MultiPolygon', 'NonGeoDataset', 'ObjectDetector',
'Optional', 'OrderedDict', 'ParkingSplotDetector', 'Path', 'Polygon', 'RandomRotation',
'ShipDetector', 'SolarPanelDetector', 'Tuple', 'Union', 'Window', '__author__',
'__builtins__', '__cached__', '__doc__', '__email__', '__file__', '__loader__', '__name__',
'__package__', '__path__', '__spec__', '__version__', 'adaptive_regularization',
'add_geometric_properties', 'analyze_vector_attributes', 'batch_vector_to_raster', 'bbox_to_xy',
'box', 'boxes_to_vector', 'calc_stats', 'change_detection', 'classify', 'classify_image',
'classify_images', 'clip_raster_by_bbox', 'coords_to_xy', 'create_overview_image',
'create_split_map', 'create_vector_data', 'csv', 'cv2', 'dataclass', 'deeplabv3_resnet50',
'dict_to_image', 'dict_to_rioxarray', 'download', 'download_file', 'download_model_from_hf',
'download_naip', 'download_overture_buildings', 'download_pc_stac_item', 'edit_vector_data',
'export_geotiff_tiles', 'export_geotiff_tiles_batch', 'export_tiles_to_geojson',
'export_training_data', 'extract', 'extract_building_stats', 'fasterrcnn_resnet50_fpn_v2',
'fcn_resnet50', 'features', 'geoai', 'geojson_to_coords', 'geojson_to_xy', 'get_device',
'get_instance_segmentation_model', 'get_model_config', 'get_model_input_channels',
'get_overture_data', 'get_raster_info', 'get_raster_info_gdal', 'get_raster_resolution',
'get_raster_stats', 'get_vector_info', 'get_vector_info_ogr', 'glob', 'gpd', 'hf',
'hf_hub_download', 'hybrid_regularization', 'image_segmentation', 'inspect_pth_file',
'install_package', 'instance_segmentation', 'instance_segmentation_batch',
'instance_segmentation_inference_on_geotiff', 'json', 'leafmap', 'logging', 'maplibregl',
'mapping', 'mask_generation', 'maskrcnn_resnet50_fpn', 'masks_to_vector', 'math',
'mosaic_geotiffs', 'ndimage', 'np', 'object_detection', 'object_detection_batch', 'orthogonalize',
'os', 'pc_collection_list', 'pc_item_asset_list', 'pc_stac_download', 'pc_stac_search', 'pd',
'pipeline', 'plot_batch', 'plot_images', 'plot_masks', 'plot_performance_metrics',
'plot_prediction_comparison', 'plt', 'print_raster_info', 'print_vector_info', 'raster_to_vector',
'raster_to_vector_batch', 'rasterio', 'read_pc_item_asset', 'read_raster', 'read_vector',
'region_groups', 'regularization', 'regularize', 'requests', 'rotate', 'rowcol_to_xy', 'rxr',
'segment', 'semantic_segmentation', 'semantic_segmentation_batch', 'set_proj_lib_path', 'shape',
'show', 'stack_bands', 'subprocess', 'sys', 'temp_file_path', 'time', 'torch', 'torchgeo', 'tqdm',
'train', 'train_MaskRCNN_model', 'train_classifier', 'train_instance_segmentation_model',
'train_segmentation_model', 'transform_bounds', 'try_common_architectures', 'utils',
'vector_to_geojson', 'vector_to_raster', 'view_image', 'view_pc_item', 'view_pc_items',
'view_raster', 'view_vector', 'view_vector_interactive', 'visualize_vector_by_attribute',
'warnings', 'write_colormap', 'xr']
# Generate star polygon vertices
points_cw = []
points_ccw = []
for i in range(steps):
t = 2 * math.pi * i / steps
r = outer_radius if i % 2 == 0 else inner_radius
x_cw = center[0] + r * math.cos(t)
y_cw = center[1] + r * math.sin(t)
x_ccw = center[0] + r * math.cos(-t + math.pi / max(lobes, 1))
y_ccw = center[1] + r * math.sin(-t + math.pi / max(lobes, 1))
points_cw.append((x_cw, y_cw))
points_ccw.append((x_ccw, y_ccw))
import os
import unittest
from PIL import Image, ImageDraw, ImageFont, ImageQt
import shutil
from PyQt6.QtWidgets import QApplication, QMainWindow, QPushButton, QFileDialog, QLabel, QVBoxLayout, QWidget, QComboBox
from PyQt6.QtGui import QPixmap
from PyQt6.QtCore import Qt
import sys
def create_test_image(path, size, number):
img = Image.new('RGBA', size, (255, 255, 255, 255))
draw = ImageDraw.Draw(img)
# Simplified to just draw the number with a basic color background
draw.rectangle((0, 0, size[0], size[1]), fill=(0, 100 * number % 255, 0, 255))
try:
font = ImageFont.load_default()
except:
font = None
draw.text((size[0]//2-5, size[1]//2-5), str(number), fill=(255, 255, 255, 255), font=font)
img.save(path, 'PNG')
def merge_sprites(folder_path, output_horizontal, output_vertical):
images = [Image.open(os.path.join(folder_path, f)) for f in os.listdir(folder_path) if f.endswith(('.png', '.jpg', '.jpeg'))]
if not images:
return None, None
width, height = images[0].size
# Horizontal merge
total_width = width * len(images)
horizontal_image = Image.new('RGBA', (total_width, height))
for i, img in enumerate(images):
horizontal_image.paste(img, (i * width, 0))
horizontal_image.save(output_horizontal, 'PNG')
# Vertical merge
total_height = height * len(images)
vertical_image = Image.new('RGBA', (width, total_height))
for i, img in enumerate(images):
vertical_image.paste(img, (0, i * height))
vertical_image.save(output_vertical, 'PNG')
return horizontal_image, vertical_image
class TestSpriteMerger(unittest.TestCase):
def setUp(self):
self.test_folder = 'test_images'
self.size = (50, 20)
os.makedirs(self.test_folder, exist_ok=True)
for i in range(3):
create_test_image(os.path.join(self.test_folder, f'test_{i+1}.png'), self.size, i+1)
def test_merge_horizontal(self):
output_h = 'test_merged_horizontal.png'
output_v = 'test_merged_vertical.png'
h_img, _ = merge_sprites(self.test_folder, output_h, output_v)
self.assertIsNotNone(h_img, "Horizontal merge failed")
self.assertEqual(h_img.size, (self.size[0] * 3, self.size[1]))
def test_merge_vertical(self):
output_h = 'test_merged_horizontal.png'
output_v = 'test_merged_vertical.png'
_, v_img = merge_sprites(self.test_folder, output_h, output_v)
self.assertIsNotNone(v_img, "Vertical merge failed")
self.assertEqual(v_img.size, (self.size[0], self.size[1] * 3))
def tearDown(self):
if os.path.exists(self.test_folder):
shutil.rmtree(self.test_folder)
for f in ['test_merged_horizontal.png', 'test_merged_vertical.png']:
if os.path.exists(f):
os.remove(f)
class SpriteMergerApp(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Sprite Merger")
self.setGeometry(100, 100, 800, 600)
self.folder_path = ""
layout = QVBoxLayout()
self.select_button = QPushButton("Select Folder")
self.select_button.clicked.connect(self.select_folder)
layout.addWidget(self.select_button)
self.merge_type = QComboBox()
self.merge_type.addItems(["Horizontal", "Vertical"])
layout.addWidget(self.merge_type)
self.process_button = QPushButton("Process Selected Folder")
self.process_button.clicked.connect(self.process_folder)
layout.addWidget(self.process_button)
self.test_button = QPushButton("Run Unit Test")
self.test_button.clicked.connect(self.run_unit_test)
layout.addWidget(self.test_button)
self.result_label = QLabel("No image processed")
layout.addWidget(self.result_label)
self.image_label = QLabel()
layout.addWidget(self.image_label)
container = QWidget()
container.setLayout(layout)
self.setCentralWidget(container)
def select_folder(self):
self.folder_path = QFileDialog.getExistingDirectory(self, "Select Sprite Folder")
self.result_label.setText(f"Selected: {self.folder_path}")
def process_folder(self):
if not self.folder_path:
self.result_label.setText("Please select a folder first")
return
h_img, v_img = merge_sprites(self.folder_path, 'merged_horizontal.png', 'merged_vertical.png')
selected_type = self.merge_type.currentText()
img = h_img if selected_type == "Horizontal" else v_img
if img:
pixmap = QPixmap.fromImage(ImageQt.ImageQt(img))
self.image_label.setPixmap(pixmap.scaled(700, 500, aspectRatioMode=Qt.AspectRatioMode.KeepAspectRatio))
self.result_label.setText(f"{selected_type} merge completed")
else:
self.result_label.setText(f"{selected_type} merge failed")
def run_unit_test(self):
suite = unittest.TestLoader().loadTestsFromTestCase(TestSpriteMerger)
result = unittest.TextTestRunner().run(suite)
test_folder = 'test_images'
os.makedirs(test_folder, exist_ok=True)
for i in range(3):
create_test_image(os.path.join(test_folder, f'test_{i+1}.png'), (50, 20), i+1)
h_img, v_img = merge_sprites(test_folder, 'test_merged_horizontal.png', 'test_merged_vertical.png')
selected_type = self.merge_type.currentText()
img = h_img if selected_type == "Horizontal" else v_img
if img:
pixmap = QPixmap.fromImage(ImageQt.ImageQt(img))
self.image_label.setPixmap(pixmap.scaled(700, 500, aspectRatioMode=Qt.AspectRatioMode.KeepAspectRatio))
self.result_label.setText(f"Unit tests: {result.testsRun} run, {len(result.failures)} failed, showing {selected_type.lower()} merge")
else:
self.result_label.setText(f"Unit tests: {result.testsRun} run, {len(result.failures)} failed, merge failed")
if __name__ == '__main__':
app = QApplication(sys.argv)
window = SpriteMergerApp()
window.show()
sys.exit(app.exec())
pip install --upgrade keras
Collecting keras
Downloading keras-3.10.0-py3-none-any.whl.metadata (6.0 kB)
...
Successfully installed absl-py-2.3.0 h5py-3.14.0 keras-3.10.0 ml-dtypes-0.5.1 namex-0.1.0 optree-0.16.0
pip install tensorflow
ERROR: Could not find a version that satisfies the requirement tensorflow (from versions: none)
ERROR: No matching distribution found for tensorflow
pip install torch
Collecting torch
...
Successfully installed filelock-3.18.0 fsspec-2025.5.1 mpmath-1.3.0 sympy-1.14.0 torch-2.7.1
import os
from groq import Groq
client = Groq(
api_key="gsk_..."
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "explain what groq is",
}
],
model="llama-3.3-70b-versatile",
)
print(chat_completion.choices[0].message.content)