analitics

Pages

Thursday, February 27, 2020

Python 3.6.9 : Google give a new tool for python users.

Today I discovered a real surprise gift made by the team from Google for the evolution of programmers.
I say this because not everyone can afford hardware resources.
This gift is a new tool called Colab and uses these versions of python and sys:
Python version
3.6.9 (default, Nov  7 2019, 10:44:02) 
[GCC 8.3.0]
Version info.
sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)
This utility allows you to run source code that requires online hardware resources using your google account.
Colab allows you to use and share Jupyter notebooks because is an open-source project on which Colab is based.
The types of GPUs that are available in Colab varies over time.
This is necessary for Colab to be able to provide access to these resources for free.
The GPUs available in Colab often include Nvidia K80s, T4s, P4s, and P100s.
This way you can test demanding modules like the python TensorFlow module.
The utility is free but you can pay extra for more hardware resources.
Colab notebooks are stored in Google Drive, or can be loaded from GitHub.
You can see a simple intro with a notebook on my GitHub account.

Tuesday, February 25, 2020

Python 3.7.6 : The new concepts of execution in python 3 - part 001.

The main goal of these tutorials series is learning to deal with python source code using the new concepts of execution in python 3.
When two or more events are concurrent it means that they are happening at the same time.
Concurrent programming is not equivalent to parallel execution.
In computing, concurrency is the execution of pieces of work or tasks by a computer at the same time.
Concurrency is a property which more than one operation can be run simultaneously.
When multiple computations or operations are carried out at the same time or in parallel with the goal of speeding up the computation process then this process is named parallelism.
Parallelism is a property which operations are actually being run simultaneously using the multiprocessing.
Multiprocessing, on the other hand, involves utilizing two or more processor units on a computer to achieve parallelism.
Multithreading is a property that refers to the ability of a CPU to execute multiple threads concurrently.
Python’s concurrency methods including threading, multiprocessing, and asyncio.
The difference between the threading and multiprocessing is this: the threading module uses threads, the multiprocessing module uses processes.
The threading is the package that provides API to create and manage threads.
With multiprocessing, Python creates new processes using an API similar to the threading module.
The asyncio is a library to write concurrent code using the async/await syntax.
The keyword async indicates that our function is a coroutine meaning they choose when to pause and let others execute and run coroutines multitask cooperatively.
The three fundamental advantages of async and await over threads are:
  • cooperative multitasking - you can reasonably have millions of concurrent tasks;
  • using await makes visible where the schedule points;
  • if a task doesn’t yield then it can accidentally block all other tasks from running;
  • tasks can support cancellation.
The next source of code show us how can deal with the execution code in Python 3 using the threading and multiprocessing python packages.
The timeit python package is used to benchmark the code write in the code_to_test variable:
Let's test the multi-threading execution with python:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> code_to_test = """
... import threading
... 
... text = "Hello World"
... 
... def print_text(text):
...     for char in text:
...             print (char)
... 
... # multi-threading execution
... def multi_threads():
...     thread_1 = threading.Thread(target=print_text(text))
...     thread_2 = threading.Thread(target=print_text(text))
...     thread_1.start()
...     thread_2.start()
...     thread_1.join()
...     thread_2.join()
... multi_threads()
... """
>>> 
>>> elapsed_time = timeit.timeit(code_to_test, number=1)
H
e
l
l
o
 
W
o
r
l
d
H
e
l
l
o
 
W
o
r
l
d
>>> print(elapsed_time)
0.010613240000566293
Let's test the serially execution with python:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> code_to_test = """
... import threading
... 
... text = "Hello World"
... 
... def print_text(text):
...     for char in text:
...             print (char)
... # serially execution
... def serially():
...     print_text(text)
...     print_text(text)
... serially()
... """
>>> elapsed_time = timeit.timeit(code_to_test, number=1)
H
e
l
l
o
 
W
o
r
l
d
H
e
l
l
o
 
W
o
r
l
d
>>> print(elapsed_time)
0.011771811000471644
Let's test the multiprocessing execution with python:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import timeit
>>> code_to_test = """
... import multiprocessing
... 
... text = "Hello World"
... 
... def print_text(text):
...     for char in text:
...             print (char)
... 
... # multiprocessing execution
... def multiprocessing_test():
...      process_1 = multiprocessing.Process(target=print_text(text))
...      process_2 = multiprocessing.Process(target=print_text(text))
...      process_1.start()
...      process_2.start()
...      process_1.join()
...      process_2.join()
... multiprocessing_test()
... """
>>> elapsed_time = timeit.timeit(code_to_test, number=1)
H
e
l
l
o
 
W
o
r
l
d
H
e
l
l
o
 
W
o
r
l
d
>>> print(elapsed_time)
0.3649730779998208
Since asyncio is a little complex, I will write about this in the next tutorial.

Sunday, February 23, 2020

Python 3.7.6 : The SELinux python package.

The tutorial for today is about the SELinux python package.
The official webpage is this.
First, I update my pip tool and I used the python 3.7.6 version:
[mythcat@desk ~]$ pip install --upgrade pip --user
...
Successfully installed pip-20.0.2
Let's install the python package named selinux:
[mythcat@desk ~]$ pip3 install selinux --user
...
Requirement already satisfied: selinux in /usr/lib64/python3.7/site-packages (2.9)
Let's test it:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import selinux 
>>> from selinux import * 
>>> print(dir(selinux))
Now, I can test my SELinux with this python package:
>>> selinux.is_selinux_enabled()
1
>>> selinux.selinux_getenforcemode()
[0, 0]
>>> mode = selinux.security_getenforce()
>>> mode
0
>>> selinux.selinux_getpolicytype()
[0, 'mls']
>>> selinux.is_selinux_enabled()
1
>>> selinux.is_selinux_mls_enabled()
1
>>> selinux.get_default_context('mythcat','user_u:object_r:user_home_t:s0')
[-1, None]
>>> context = selinux.matchpathcon(os.path.normpath(/), 0)[1]
>>> context
'system_u:object_r:root_t:s0'
>>> selinux.restorecon('/')
>>> context_t = selinux.getfilecon('/')[1].split(":")[2]
>>> context_t 
'root_t'
>>> context_t = selinux.getfilecon('/home/mythcat')[1].split(":")[2]
>>> context_t 
'user_home_dir_t'
>>> selinux.matchpathcon('/', mode)
[0, 'system_u:object_r:root_t:s0']
>>> selinux.matchpathcon('/home/mythcat', mode)
[0, 'user_u:object_r:user_home_dir_t:s0']
>>> file_context=selinux.lgetfilecon('/home/mythcat/sel_001.py')
>>> file_context
[31, 'user_u:object_r:user_home_t:s0']
>>> selinux.security_policyvers()
32

Saturday, February 22, 2020

Python 3.7.5 : This python package can work with ArcGIS platform.

This python package is named like the ArcGIS platform and can be used for spatial analysis, mapping, and GIS.
The ArcGIS package uses the ArcGIS platform for organizations to create, manage, share, and analyze spatial data.
This platform has a server component, mobile and desktop applications, and developer tools.
[mythcat@desk projects]$ pip3 install arcgis --user
...
You can test it on your workstation or live using the notebooks esri.com, see the next screenshot:

Let's search all maps from world with the maps of disaster using the notebook from esri website.
from arcgis.gis import GIS
from arcgis.geocoding import geocode
from IPython.display import display
from arcgis.mapping import WebMap
from arcgis.geoprocessing import import_toolbox
gis = GIS()
map1 = gis.map()

webmap_search = gis.content.search("disaster", item_type="Web Map")
webmap_search
The result will be this list:
[<Item title:"Hurricane and Cyclone Web Map" type:Web Map owner:cfernerDRP>, 
<Item title:"Severe Weather Web Map" type:Web Map owner:cfernerDRP>, 
<Item title:"NYC OEM Hurricane Evacuation Zones" type:Web Map owner:nfurness>, 
<Item title:"County of San Diego Emergency Map (Live)" type:Web Map owner:oes_services>, 
<Item title:"Zombie US" type:Web Map owner:wjones_mt>, 
<Item title:"2009 Social Vulnerability in the United States (Mature Support)" type:Web Map owner:esri>, 
<Item title:"Waldo Canyon Fire - Consolidated Public Information" type:Web Map owner:jpfeffer>, 
<Item title:"US Wildfire Activity Web Map" type:Web Map owner:cfernerDRP>, 
<Item title:"Earthquake Web Map" type:Web Map owner:cfernerDRP>, 
<Item title:"Current Weather and Wind Station Information" type:Web Map owner:esri_livefeeds>]
Now you can show each map by usinh the index:
map_one = webmap_search[1]
map_one

Wednesday, February 19, 2020

Python 3.7.5 : The PyQtChart from python Qt5.

The PyQtChart is a set of Python bindings for The Qt Company’s Qt Charts library and is implemented as a single module.
Let's install this python package with the pip3 tool:
[mythcat@desk ~]$ pip3 install PyQtChart --user
...
Installing collected packages: PyQtChart
Successfully installed PyQtChart-5.14.0
Let's test with a simple example:
from PyQt5.QtWidgets import QApplication, QMainWindow
import sys
from PyQt5.QtChart import QChart, QChartView, QPieSeries, QPieSlice
from PyQt5.QtGui import QPainter, QPen
from PyQt5.QtCore import Qt

class Window(QMainWindow):
    def __init__(self):
        super().__init__()

        self.setWindowTitle("testing Pie Chart")
        self.setGeometry(100,100, 640,480)
        self.show()
        self.create_piechart()

    def create_piechart(self):

        series = QPieSeries()
        #append all values with a sum of 360 
        series.append("size 5", 5)
        series.append("size 10", 10)
        series.append("size 30", 30)
        series.append("size 45", 45)
        series.append("size 90", 90)
        series.append("size 180", 180)

        #adding slice 
        slice = QPieSlice()
        slice = series.slices()[2]
        slice.setExploded(True)
        slice.setLabelVisible(True)
        slice.setPen(QPen(Qt.darkGreen, 1))
        slice.setBrush(Qt.green)
        slice = series.slices()[4]
        slice.setExploded(False)
        slice.setLabelVisible(True)
        slice.setPen(QPen(Qt.red, 1))
        #slice.setBrush(Qt.blue)

        #create chart 
        chart = QChart()
        #chart.legend().hide()
        chart.addSeries(series)
        chart.createDefaultAxes()
        chart.setAnimationOptions(QChart.SeriesAnimations)
        chart.setTitle("The all 360 on  chart .")

        chart.legend().setVisible(True)
        chart.legend().setAlignment(Qt.AlignBottom)

        chartview = QChartView(chart)
        chartview.setRenderHint(QPainter.Antialiasing)

        self.setCentralWidget(chartview)

App = QApplication(sys.argv)
window = Window()
sys.exit(App.exec_())
The result can be seen in the next image:

Sunday, February 16, 2020

Python 3.7.5 : The httpx python package.

Today I will present a new python packet that can help you in developing web applications.
This is the next generation HTTP client for Python and is named httpx.
This python package comes with a nice logo: a butterfly.
The official webpage can be found at this webpage.
The development team come with this intro:
HTTPX is a fully featured HTTP client for Python 3, which provides sync and async APIs, and support for both HTTP/1.1 and HTTP/2.
I install it on my Fedora 31 distro with the pip3 tool.
[mythcat@desk ~]$ pip3 install httpx --user
...
Successfully installed h11-0.9.0 h2-3.2.0 hpack-3.0.0 hstspreload-2020.2.15 httpx-0.11.1 
hyperframe-5.2.0 rfc3986-1.3.2 sniffio-1.1.0
With this python package, you can build a simple application with https API, migrate an application that uses web requests to make HTTP call.
use it as a test client for your web project, build a web spider and much more.
All HTTP methods get, post, patch, put, delete are implemented as coroutines in httpx python package and supports HTTP/2.
Let's start with few lines of source code:
[mythcat@desk ~]$ python3 
Python 3.7.6 (default, Jan 30 2020, 09:44:41) 
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import httpx
>>> out = httpx.get('https://www.google.com')
>>> out.status_code
200
>>> out.headers['content-type']
'text/html; charset=ISO-8859-1'
>>> out.text[:76]
'<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" lang='
>>> out.http_version
'HTTP/1.1'
>>> with httpx.Client() as client:
...     out_client = client.get('https://www.google.com')
... 
>>> out_client.http_version
'HTTP/1.1'
You can use asynchronous call to bost your python application using httpx python package.
I will make a tutorial about asyncio in the future.
For example, the website named example.com can return json data and using the next source code I can get it using the asyncio package.
import httpx
import asyncio
from typing import Dict
async def get_web() -> Dict:
    resp = await httpx.get("https://example.com/")
    if resp.status_code == httpx.codes.OK:
        return resp.json()
if __name__ == '__main__':   
    comments = asyncio.run(get_web())
Use async and await when you have to execute HTTP calls with httpx because is fully Requests compatible async HTTP Client.
The HTTPX comes with a lot of features, see the official GitHub webpage.

Saturday, February 15, 2020

Python 3.7.5 : Use Brython in web development to avoid javascript.

The tutorial for today is about how can avoid the javascript and use python script in webdevelopment using the Brython.
Brython's goal is to replace Javascript with Python, as the scripting language for web browsers. see the official webpage.
It is necessary to include brython.js and to run the brython() function upon page load using the onload attribute of the BODY tag.
You can use python language in the HTML file or you can write it in a separate file, and to load it using the src attribute of the script tag:
<html>
<head>
<script src="/brython.js"></script>
</head>
<body onload="brython()">
<script type="text/python" src="test.py"></script>
<input id="zone" autocomplete="off">
<button id="mybutton">click!</button>
</body>
</html>
Let's see one simple example with one edit and button bind
<html>
<head>
<script src="/brython.js"></script>
</head>
<body onload="brython()">
<script type="text/python">
from browser import document, alert
def echo(ev):
 alert(document["zone"].value)
document["mybutton"].bind("click", echo)
</script>
<input id="zone">
<button id="mybutton">click !</button>
</body>
</html>
When I click on the button, the onclick event calls and run the echo() function and gets the value of the INPUT element, through its id named zone and show the message.
Is fast and works great with javascripts libraries, see the example with THREE demo.
from browser import document, window

THREE = window.THREE

camera = THREE.PerspectiveCamera.new(75, 1, 1, 10000)
camera.position.z = 1000
scene = THREE.Scene.new()
geometry = THREE.CubeGeometry.new(200, 200, 200)
material = THREE.MeshBasicMaterial.new({"color": "#ff0000", "wireframe": True})
mesh = THREE.Mesh.new(geometry, material)
scene.add(mesh)

renderer = THREE.WebGLRenderer.new()
renderer.setSize(444, 444)

document <= renderer.domElement
renderer.render(scene, camera)

def animate(i):
    # note: three.js includes requestAnimationFrame shim
    window.requestAnimationFrame(animate)

    mesh.rotation.x += 0.01
    mesh.rotation.y += 0.02

    renderer.render(scene, camera)   

animate(0)

Tuesday, February 11, 2020

Python 3.7.5 : Using the hug framework - part 001.

Today I will come with another tutorial series about the hug framework.
The hug framework is on the top 3 performing web frameworks for Python and comes with the cleanest way to create HTTP REST APIs on Python 3.
The official webpage can be found hug web page with a good area for learn.
Let's install this python package.
[mythcat@desk projects]$ mkdir hug_001
[mythcat@desk projects]$ cd hug_001/
[mythcat@desk hug_001]$ pip3 install hug --user
...
Successfully installed hug-2.6.1
The Hug is a framework that allows you to expose a single code in several ways:
  • a local package;
  • as an A.P.I.;
  • as a C.L.I.;
Let's create an app.py python script to see all of these options:
import hug

# local pkg 
@hug.local()
def get_products(product:hug.types.text):
        """Get product name"""
        return {"product":product.upper()}

# API
@hug.get()

# CLI
@hug.cli()
To test it I used this source code:
import hug

# local pkg 
@hug.get()
@hug.local()
def get_products(product:hug.types.text):
        """Get product name"""
        return {"product":product.upper()}
The rerver can be run with this command:
[mythcat@desk hug_001]$ hug -f app.py

/#######################################################################\
          `.----``..-------..``.----.
         :/:::::--:---------:--::::://.
        .+::::----##/-/oo+:-##----:::://
        `//::-------/oosoo-------::://.       ##    ##  ##    ##    #####
          .-:------./++o/o-.------::-`   ```  ##    ##  ##    ##  ##
             `----.-./+o+:..----.     `.:///. ########  ##    ## ##
   ```        `----.-::::::------  `.-:::://. ##    ##  ##    ## ##   ####
  ://::--.``` -:``...-----...` `:--::::::-.`  ##    ##  ##   ##   ##    ##
  :/:::::::::-:-     `````      .:::::-.`     ##    ##    ####     ######
   ``.--:::::::.                .:::.`
         ``..::.                .::         EMBRACE THE APIs OF THE FUTURE
             ::-                .:-
             -::`               ::-                   VERSION 2.6.1
             `::-              -::`
              -::-`           -::-
\########################################################################/

 Copyright (C) 2016 Timothy Edmund Crosley
 Under the MIT License


Serving on :8000...
OPen the browser with the http://localhost:8000/ or http://localhost:8000/products:
If you want to use the CLI then you need to make these changes in the source code:
import hug
# cli 
@hug.cli()
# local pkg 
@hug.get('/products')
@hug.local()
def get_products(product:hug.types.text):
        """Get product name"""
        return {"product":product.upper()}
# the main CLI
if __name__ == '__main__':
        get_products.interface.cli() 
I can see the help area from python:
[mythcat@desk hug_001]$ hug -f app.py -c help
app

Available Commands:

 - get_products: Get product name 
The hug help show the all arguments for use:
[mythcat@desk hug_001]$ hug --help
usage: hug [-h] [-v] [-f FILE] [-m MODULE] [-ho HOST] [-p PORT] [-n] [-ma]
           [-i INTERVAL] [-c COMMAND] [-s]

Hug API Development Server

optional arguments:
  -h, --help            show this help message and exit
  -v, --version         show program's version number and exit
  -f FILE, --file FILE  file
  -m MODULE, --module MODULE
                        module
  -ho HOST, --host HOST
                        host
  -p PORT, --port PORT  A whole number
  -n, --no_404_documentation
                        Providing any value will set this to true
  -ma, --manual_reload  Providing any value will set this to true
  -i INTERVAL, --interval INTERVAL
                        A whole number
  -c COMMAND, --command COMMAND
                        command
  -s, --silent          Providing any value will set this to true